5.1 - Vertical and Horizontal Shifts

Translations of a Function and Its Graph

If y = g(x) is a function and k is a constant, then the graph of

- y = g(x) + k is the graph of y = g(x) shifted vertically |k| units. If k is positive, the shift is up; if k is negative, the shift is down.
- y = g(x + k) is the graph of y = g(x) shifted horizontally |k| units. If k is positive, the shift is to the left; if k is negative, the shift is to the right.

A vertical or horizontal shift of the graph of a function is called a *translation* because it does not change the shape of the graph, but simply translates it to another position in the plane. Shifts or translations are the simplest examples of *transformations* of a function.

Inside and Outside Changes

Since y = g(x+k) involves a change to the input value, x, it is called an *inside change* to g. Similarly, since y = g(x) + k involves a change to the output value, g(x), it is called an *outside change*. In general, an inside change in a function results in a horizontal change in its graph, whereas an outside change results in a vertical change.

For the function Q = f(t), a change inside the function's parentheses can be called an "inside change" and a change outside the function's parentheses can be called an "outside change".

Example 5 on pg. 197 in Text

If n = f(A) gives the number of gallons of paint needed to cover a house of area A ft² explain the meaning of n = f(A+10) and n = f(A)+10 in the context of painting.

Example 9 on pg. 199 in Text

A graph of $f(x) = x^2$ is in figure 5.5 below. Define g by shifting the graph of f. Find a formula for g in terms of f.

Figure 5.5: The graph of $f(x) = x^2$

Figure 5.6: The graph of g, a transformation of f

5.1 Examples:

- **1.** If $f(x) = 3x^2 + 4x$ and h(x) = f(x) 3, what is h(3)?
- **2.** If $r(t) = e^t$ for t > 0, what is the formula for s(t) = r(t-1)?
- 3. If $f(x) = 3x^2 + 3x$ what is the formula for g(x) = f(x-4)?
- **4.** Let $f(x) = \ln x$ and $g(x) = \ln(x+5)$ for x > 0. How does the graph of g(x) compare to the graph of f(x)?
- 5. Given f(x) = |x|, what does the following figure show, give a formula?

5.2 - Reflections and Symmetry

In this section we consider the effect of reflecting a function's graph about the *x* or *y*-axis. A reflection about the *x*-axis corresponds to an outside change to the function's formula; a reflection about the *y*-axis corresponds to an inside change.

A Formula for Reflection

For a function f

- The graph of y = -f(x) is a reflection of the graph of y = f(x) about the x-axis.
- The graph of y = f(-x) is a reflection of the graph of y = f(x) about the y-axis.

Symmetry About the y-Axis

In general:

If f is a function, then f is called an **even function** if, for all values of x in the domain of f,

$$f(-x) = f(x)$$
.

The graph of f is symmetric about the y-axis.

Symmetry About the Origin

In general:

If f is a function, then f is called an **odd function** if, for all values of x in the domain of f,

$$f(-x) = -f(x)$$
.

The graph of f is symmetric about the origin.

Example 1 on pg. 203 in Text

Find a formula in terms of f using the table below for (see text for the graphs):

a.
$$y = g(x)$$

b.
$$y = h(x)$$

c.
$$y = k(x)$$

x	-3	-2	-1	0	1	2	3
f(x)	1	2	4	8	16	32	64
g(x)	-1	-2	-4	-8	-16	-32	-64
h(x)	64	32	16	8	4	2	1
k(x)	-64	-32	-16	-8	-4	-2	-1

Example 2 on pg. 205 in Text

For the function $p(x) = x^2$, check algebraically that p(-x) = p(x) for all x.

Example 3 on pg. 206 in Text

For the function $q(x) = x^3$, check algebraically that q(-x) = -q(x) for all x.

Example 4 on pg. 207 in Text

Determine whether the following functions are symmetric about the y-axis, the origin, or neither.

a.
$$f(x) = |x|$$

b.
$$g(x) = \frac{1}{x}$$

a.
$$f(x) = |x|$$
 b. $g(x) = \frac{1}{x}$ c. $h(x) = -x^3 - 3x^2 + 2$

Examples:

1.

x	-3	-2	-1	0	1	2	3
f(x)	-4	-1	2	3	0	-3	-6
f(-x)							
-f(x)							

- 2. Show that the function $f(x) = x^4 x^2 + 7$ is even, odd, or neither <u>and</u> explain.
- 3. If $m(n) = n^2 + n 3$, give a formula and explain the transformation y = -m(-n) 4

5.3 - Vertical Stretches and Compressions

Formula for Vertical Stretch or Compression

In general:

If f is a function and k is a constant, then the graph of $y = k \cdot f(x)$ is the graph of y = f(x)

- Vertically stretched by a factor of k, if k > 1.
- Vertically compressed by a factor of k, if 0 < k < 1.
- Vertically stretched or compressed by a factor |k| and reflected across the x-axis, if k < 0.

Stretch Factors and Average Rates of Change

Stretching or compressing a function vertically does not change the intervals on which the function increases or decreases. However, the average rate of change of a function, visible in the steepness of the graph, is altered by a vertical stretch or compression.

In general:

If $g(x) = k \cdot f(x)$, then on any interval:

Average rate of change of $g = k \cdot (Average rate of change of f)$.

Example 3 on pg. 215 in Text

Consider the function $y = f(x) = x^2$, graph the function $g(x) = -\frac{1}{2}f(x+3)-1$.

Examples:

1. The following table gives values for a function f. Fill in the blanks of the table for which you have sufficient information.

х	-3	-2	-1	0	1	2	3
f(x)	-10	-5	4	1	0	-2	-8
f(x+1)							
f(x)+3							
-f(x)							
f(-x)-2							
3f(x)							

2. A carpenter currently builds k chairs per week at a cost of f(k). What do the following expressions represent?

a.
$$f(k+10)$$

b.
$$f(k) + 10$$

c.
$$2f(k)$$

d.
$$f(2k)$$

3. Using the graph of f(x), write formulas for functions in (a) to (d) and explain the transformation.

(b)

(c)

(d)

5.4 - Horizontal Stretches and Compressions

Formula for Horizontal Stretch or Compression

In general:

If f is a function and k a positive constant, then the graph of $y = f(k \cdot x)$ is the graph of f

- Horizontally compressed by a factor of 1/k if k > 1.
- Horizontally stretched by a factor of 1/k if k < 1.
- If k < 0, then the graph of $y = f(k \cdot x)$ also involves a horizontal reflection about the y-axis.

Example 1 on pg. 221 in Text

The values of f(x) are in the table, see the text for the graph. Make a table and a graph of the function $g(x) = f(\frac{1}{2}x)$.

х	f(x)
-3	0
-2	2
-1	0
0	-1
1	0
2	-1
3	1

Example 2 on pg. 222 in Text

Let f(x) be the function in **Example 1**. Make a table and a graph for the function h(x) = f(2x).

х	f(x)
-3	0
-2	2
-1	0
0	-1
1	0
2	-1
3	1

$\boldsymbol{\mathcal{X}}$	h(x)

Example 3 on pg. 222 in Text

Match the functions $f(t) = e^t$, $g(t) = e^{0.5t}$, $h(t) = e^{0.8t}$, $j(t) = e^{2t}$ with the graph below.

5.5 - The Family of Quadratic Functions

The graph of a quadratic function is called a *parabola*; its maximum (if the parabola opens downward) or minimum (if the parabola opens upward) is the vertex.

The Vertex of a Parabola

The graph of the function $f(x) = x^2$ is a parabola with vertex at the origin. All other functions in the quadratic family turn out to be transformations of this function.

In general, the graph of $g(x) = a(x-h)^2 + k$ is obtained from the graph of $f(x) = x^2$ by shifting horizontally |h| units, stretching vertically by a factor of a (and reflecting about the x-axis if a < 0), and shifting vertically |k| units. In the process, the vertex is shifted from (0, 0) to the point (h, k). The graph of the function is symmetrical about a vertical line through the vertex, called the *axis of symmetry*.

In general:

The **standard form** for a **quadratic function** is

$$y = ax^2 + bx + c$$
, where a, b, c are constants, $a \ne 0$.

The **vertex form** is

$$y = a(x-h)^2 + k$$
, where a, h, k are constants, $a \neq 0$.

The graph of a quadratic function is called a **parabola**. The parabola

- Has vertex (h, k)
- Has axis of symmetry x = h
- Opens upward if a > 0 or downward if a < 0

The **factored form** is

y = a(x - m)(x - n), where x = m and x = n are the x-intercepts and a is a constant, $a \neq 0$.

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Finding a Formula from a Graph

If we know the vertex of a quadratic function and one other point, we can use the vertex form to find its formula.